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Abstract 6 

Stochastic differentiation and programmed cell death are core developmental processes in microbes, driving 7 
diverse altruistic behaviors that promote cooperative behaviors. Utilizing cell death in developmental 8 
programs requires control over differentiation rates to balance cell proliferation against the utility of sacrifice. 9 
However, the regulatory networks that control these behaviors are often complex and have yet to be 10 
successfully harnessed as biotechnology. Here, we engineered a synthetic developmental gene network that 11 
couples stochastic differentiation with programmed cell death to implement a two-member division of labor. 12 
Progenitor cellobiose consumer cells were engineered to grow on cellobiose and differentiate at a controlled 13 
rate into self-destructive altruists that release a cellulase enzyme payload through autolysis to create a 14 
developmental Escherichia coli consortium that utilizes cellulose for growth. A population dynamics model 15 
predicted fitness in cellulose based on parameter estimates of modular circuit components, including 16 
increased growth observed with altruist cells modified to export a multi-cellulase cocktail that liberated 14-17 
23% of the available carbon. An inevitable consequence of engineering developmental behaviors is the 18 
emergence of cheaters that undermine cooperation. We observed cheater phenotypes for consumers and 19 
altruists, identified modes of evolutionary escape and identified the relationship between mutation rates and 20 
circuit longevity, a requirement for extending developmental programs to complex environments. This work 21 
introduces the developmental program as a new tool for synthetic circuit design, demonstrates the utility of 22 
population dynamics models in this setting and provides a testbed for probing the evolutionary biology of 23 
self-destructive altruism. 24 

Introduction 25 

Compartmentalization of function across differentiated cell types was essential to the emergence of 26 
complexity in biological systems. Organogenesis in plants and animals1, schizogamy in polychaete worms2 27 
and germ-soma differentiation in Volvox algae3 are clear examples of these divisions of labor. Microbial 28 
developmental programs utilize stochastic differentiation and programmed cell death as vital components of 29 
population fitness4. Selection for programmed cell death has been proposed to drive complex behaviors that 30 
delay commitment to costly cell fate decisions5, enable adaptation to environmental fluctuations6, eliminate 31 
competitor species7, reinforce biofilm structure8 and promote colonization of hostile environments9. These 32 
behaviors represent divisions of labor between subpopulations of progenitor (germ) cells that propagate the 33 
species and sacrificial (soma) cells that provide a public good. Many aspects of the emergence of multi-34 
cellular cooperation and the genetic circuits that control its complexity remain unclear. Limited understanding 35 
of the architectures and stimuli that control developmental gene networks limits efforts to repurpose them to 36 
engineer cell behaviors. 37 
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Current engineering paradigms of DNA-encoded logic and feedback control circuits in cells fail to encompass 38 
the full suite of behaviors desired to advance the fields of bioprocessing, bioremediation and cell-based 39 
therapeutics. Protein production and release is challenging10,11, often requiring protein or molecule-specific 40 
pumps. Deterministic autolysis allows release of protein payloads12 but limits applications that may require 41 
consistent, dosed delivery. A major challenge to engineering synthetic microbial consortia is the control of 42 
population distributions for complex traits. While syntrophic interactions in defined communities may address 43 
some of these needs, they may not be sustainable in unconstrained nutrient or complex microbial 44 
environments. Synthetic developmental programs could address these challenges, enabling approaches to 45 
create, and regenerate, microbial communities seeded by individual cells that cooperatively implement 46 
complex behaviors. 47 

SDAc as a developmental program 48 

Here we present a synthetic developmental program that implements a germ-soma division of labor to 49 
cooperatively digest cellulose. The program links a synthetic differentiation circuit with autolysis-mediated 50 
enzymatic payload delivery, balancing the rates of stochastic differentiation and programmed cell death to 51 
drive population growth. We constructed a genetic circuit to create cellobiose consumer cells that produce a 52 
sub-population of self-destructive altruists at a controlled rate to enable utilization of cellulose as a sole 53 
carbon source through extracellular release of cellulase payloads (Figure 1a). We refer to the system as 54 
SDAc, short for self-destructive altruism with a cellulase payload. We implemented SDAc in Escherichia coli 55 
by engineering a native operon to efficiently utilize cellobiose, introducing a genetic toggle switch tuned to 56 
function as a differentiation controller, and constructing a cellulase-lysis payload module to execute the 57 
altruist behavior (Figure 1b). We used dynamical systems modeling to identify core parameters of the gene 58 
network and demonstrated control over the circuit behavior by fine-tuning each parameter. 59 

SDAc network architecture 60 

Using multiplexed mutagenesis and selection, we isolated a strain with a growth rate in cellobiose that is 61 
63% its growth rate in glucose. Though E. coli does not natively digest cellobiose, we modified the chb 62 
operon in a recombinogenic MG1655 derivative13 by replacing the native chitobiose-regulated promoter with 63 
a strong constitutive promoter14. We further improved growth on cellobiose by subjecting the constitutive chb 64 
variant to multiple cycles of single-strand DNA multiplexed recombineering targeting the chb genes and 65 
selected for cellobiose utilization in minimal cellobiose media (Supplementary Figure 1). We identified the 66 
variant with the highest growth rate, DL069, as a chbR deletion mutant. 67 

To control differentiation rate, we constructed and sampled from a library of mutual inhibition toggle switch 68 
variants that exhibit regular stochastic state transitions. While genetic toggle switches are often designed to 69 
function as bistable memory devices15, a quasi-steady state can be achieved by properly balancing 70 
expression levels of the repressor proteins16. Simple sequence repeats embedded in the ribosome binding 71 
site (rbSSR) allow predictable modulation of translation initiation rate to tune the balance between 72 
transcriptional repressors17, which for this circuit are LacI and TetR. 73 

We engineered altruist payload delivery by constructing a cellulase and lysis gene cassette. The operon was 74 
designed to maximize production of the cellulase payload with an efficient ribosome binding site and a poly-75 
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(AT) rbSSR to fine-tune lysis gene expression. Minimization of the fitness defects of self-destructive 76 
altruism dictates post-differentiation accumulation of the payload followed by autolysis. Colicin gene 77 
networks share this trait, using stochastic gene expression of colicin and lysis genes within subpopulations to 78 
deliver a toxin against ecological competitors7,18. We found that coupling the lysis gene from colicin E3 to the 79 
differentiation controller enabled stochastic state transitions and delayed lysis at the microcolony level, 80 
evidenced by post-differentiation accumulation of a GFP payload followed by autolysis (Figure 1c and 81 
Supplementary Movie). 82 

Model description for self-destructive altruism with enzymatic payload 83 

Analysis of a population dynamics model of SDAc behavior suggested optimal parameter regimes for 84 
cellulose utilization and guided implementation of the developmental circuit. Though we observed the 85 
requisite behaviors of differentiation, payload accumulation and autolytic release at the microcolony level, it 86 
was not clear what expression levels of circuit components would enable cooperative growth on cellulose. To 87 
reason about the functional parameter space for the SDAc circuit we developed a population dynamics 88 
model using a system of ordinary differential equations that maps core parameters to experimentally tunable 89 
features of the genetic circuit. The model species are consumers, altruists, cellulose feedstock, and 90 
cellulose-derived nutrients. These species and the associated kinetic parameters are described in Box 1. 91 

The core tunable parameters for SDAc cellulose utilization are the growth rate on cellobiose, differentiation 92 
rate, lysis rate, and cellulase activity. Cells must utilize the hydrolysis products of the cellulase enzymes, 93 
significantly cellobiose. Minimal differentiation would limit growth via insufficient cellulase production, while 94 
excessive differentiation would incur unnecessary fitness defects for consumers or, at extreme rates, to 95 
population collapse. Low lysis rates would limit feedstock degradation through intracellular cellulase 96 
sequestration and excessive rates would reduce payload burst size due to premature lysis. High cellulase 97 
activity improves growth titer by reducing the population fraction of altruists required to deconstruct the 98 
feedstock. Ultimately, SDAc performance is constrained by the tunability of the circuit components and large 99 
regions of parameter space predict no growth on cellulose (Supplementary Figure 2). 100 

SDAc parameter estimates through modular system decomposition 101 

The modularity of synthetic gene circuits allowed us to decompose the system model and its experimental 102 
components to estimate core parameters and predict cellulose utilization for the full circuit. We developed 103 
the modules described in Box 1 to measure growth rate on cellobiose, differentiation rate, lysis rate, and 104 
cellulase activity, each drawing from a small part library to sample a range of parameters. 105 

We experimentally tuned differentiation rate over an order of magnitude with a collection of autolysis 106 
deficient SDAc strains. Specifically, we used multiple poly-(T) rbSSR variants controlling TetR expression to 107 
modulate the differentiation rate from TetR-dominant consumers to LacI-dominant altruists deficient in 108 
autolysis (Figure 2a,b). We measured the population fraction of differentiated cells as a function of time using 109 
flow cytometry (Supplementary Figure 3) and fit a two-state, continuous growth model to the data for 110 
consumers transitioning to altruists at rate ! (Box1, Module ii). We found that the repeat length was inversely 111 
proportional to switching rate, supporting previous results for a different copy number plasmid17 and resulting 112 
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in ! estimates ranging from 2.7×10!! ± 9.0×10!! ℎ!! for (T)12 to 2.11×10!! ± 1.5×10!! ℎ!! for (T)18 113 
(Figure 2c, Supplementary Table 4). 114 

Lysis rates were modulated over a four-fold range using expression variants of the colicin E3 lysis gene. 115 
Using intermediate differentiator (T)16, we tested a set of poly-(AT) rbSSR variants to modulate lysis gene 116 
expression (Figure 2d,e). We used the same population fraction assay as for differentiation to fit a consumer 117 
growth and differentiation model that includes altruist lysis parameter ! (Box1, Module iii). We measured 118 
lysis rates from 7.3×10!! ± 1.8×10!! ℎ!! for (AT)11 to 1.9×10!! ± 2.5×10!! ℎ!! for (AT)8 (Figure 2f, 119 
Supplementary Table 5). As predicted by the model, the differentiated fraction of each switch variant 120 
expressing an (AT)8 lysis gene is lower than for the equivalent autolysis-deficient strain (Supplementary 121 
Figure 5). We found, however, that the lysis rate was well-correlated to the poly-(AT) (Supplementary 122 
Figure 6). 123 

To estimate cellulase activity we quantified cellulose degradation from cell lysates of autolysis-deficient 124 
SDAc strains producing individual cellulases, observing hydrolysis rates over a five-fold range. We measured 125 
cellulose degradation and digestible nutrient release for three endoglucanases from two glycoside hydrolase 126 
(GH) families: CelD0419 and BsCel520 from GH5; and CpCel9 from GH921. We also measured the activity of 127 
multi-enzyme cocktails using each GH5 enzyme with CpCel9, combinations shown to have synergistic 128 
activities22 (Figure 2f,g). We used Congo Red staining to observe cellulose degradation up to 23% 129 
(Supplementary Note 6) in M9 minimal phosphoric acid swollen cellulose (PASC) spiked with cell lysate and 130 
quantified cell growth on the resulting supernatant to estimate nutrient release of up to 14% of cellobiose 131 
equivalents (see Supplementary Figure 8, Supplementary Note 6). We used these cellulase activity 132 
measurements to fit a value for ! to the feedstock differential equation (Box 1, Module iv, Equation 3). 133 
Cellulase activity estimates range from 3.6×10!!" ± 3.9×10!!" CFU-1 mL for CpCel9 to 1.9×10!!" ±134 
3.0×10!!" CFU-1 mL for the BsCel5/CpCel9 cocktail (Figure 2i, Supplementary Table 7). 135 

Full system performance & model predictability 136 

To quantify the combined effects of SDAc differentiation and autolysis dynamics on feedstock degradation 137 
we measured cellulase activity on cellulose. Cellulose hydrolysis by individual colonies was measured by 138 
Congo Red clearing assays on agar plates supplemented with carboxymethylcellulose (Figure 3). We found 139 
that the clearing diameter for switch variants increased as a function of differentiation rate (Figure 3b). We 140 
observed no clearings for a control lacking cellulase. We also tested the effect of rbSSR lysis variants for 141 
cellulase CelD04 (Figure 3c,d) as well as for individual cellulases (Figure 3g,h) using the intermediate 142 
differentiator (T)16. We found the GH5 cellulases generated larger clearings than CpCel9, consistent with 143 
the in vitro cellulase activity results. 144 

Fine-tuning the differentiation, lysis and cellulase activity parameters is critical to realizing robust SDAc 145 
growth on cellulose as a sole carbon source. To determine fitness on cellulose and validate the full dynamics 146 
model (Box 1, module i), we measured viable cell counts in PASC for SDAc variants that span a range of 147 
values for each core parameter (Figure 3). We found optimal SDAc fitness at intermediate differentiation 148 
rates (Figure 3c), with efficient payload release (Figure 3f) and with high cellulase activity (Figure 3i), trends 149 
that are consistent with the naive model predictions in Supplementary Figure 2. Growth kinetics fits using 150 
parameter estimates from individual modules match observations for most variants, though the model 151 
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predicted longer lags for differentiation variant (T)18 and failed to capture a late boost in cell density for the 152 
BsCel5-CpCel9 cellulase (Supplementary figure 8). 153 

SDAc system cheaters 154 

The full dynamics model of SDAc growth on cellulose predicts that high differentiation rates will lead to 155 
system collapse (Figure 3a), but does not account for mutational dynamics that could produce non-156 
cooperative cheaters. Indeed, we found the SDAc system showed long-term functional instability for 157 
hyperdifferentiator switch variant (T)18. We observed the instability in the cellobiose differentiation assay as 158 
two distinct, temporally separated steady-state altruist fractions, a result that was corroborated by two 159 
population growth rate regimes from the same assay (see Figure 4d,e). We also observed three distinct 160 
colony phenotypes after extended growth in PASC media (Figure 4a), further suggesting functional instability 161 
for extreme parameter values. 162 

NEXT TWO NEED TO BE UPDATED BASED ON MODELING DATA 163 

Application of all potential models incorporating cheater states suggests that two cheater phenotypes 164 
independently deficient in differentiation and lysis are necessary to observe the measured dynamics. Four 165 
potential models are possible for the cheater dynamics, each with multiple potential initial condition states. 166 
The models account for differentiation-deficient cheaters, lysis-deficient cheaters, both cheater types, or no 167 
observable cheater phenotypes (Figure 4b). For initial conditions, cheaters may arise from distinct mutation 168 
events during growth or be pre-existent in the culture and rise in population fraction once the majority of cells 169 
differentiate and lyse. We derived analytical solutions for each of these models, finding that the only models 170 
that support the observed data include both cheater states (Supplementary Note 10). These analytical 171 
solutions do not distinguish between initial conditions that require de novo mutagenesis or inocula that 172 
contain small mutant populations. 173 

To examine the SDAc dynamics with cheaters, we developed a model that introduces new species for switch 174 
consumer cheaters (S) and or pseudo-altruist lysis cheaters (P) and their associated escape rates, !! and 175 
!!, respectively (Box 1, module iv). We applied the extended model to the differentiation and lysis data for 176 
cellobiose growth for hyperdifferentiator (T)18 (Figure 4c). The model fit estimates consumer cell defections 177 
to switch cheats at a rate of 1.2×10!! ± 9.8×10!! ℎ!! and the emergence of altruist cheats at a rate of 178 
7.5×10!! ± 3.5×10!! ℎ!!. Using cheater parameters fit from hyperdifferentiator (T)18, intermediate 179 
differentiator (T)16 is also predicted to accumulate cheaters within the measurement interval, which fits the 180 
trend of the cellobiose switching data. When applying the same escape rates to the combined population 181 
growth rate for differentiation variants, we found the model predicted the observed growth rate dynamics for 182 
variants with high differentiation rates (Figure 4d). Further, using the cheater rate estimates into a modified 183 
PASC growth model that incorporates cheater dynamics improves the growth fit for the differentiation 184 
variants, in particular (T)18 (Supplementary Figure 9e). 185 

DNA sequencing of cheater isolates confirms genetic sources for both differentiation and lysis deficiencies 186 
(Figure 4e). We observed bright red colonies and bright green colonies – putative differentiation and lysis 187 
cheaters, respectively – media in addition to the expected mixed-color colony on solid media after growth in 188 
PASC. Sequence analysis of the differentiation plasmid from red escape colonies isolated from six replicate 189 
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cultures revealed mutations to two hypermutable loci with predictable effects (Supplementary Table 10): 190 
expansion or contraction of the tandem (CTGG)3 mutational hotspot observed in four of six replicates should 191 
prevent altruist emergence through inactive, truncated Lac repressor23; deletions within the (T)18 rbSSR 192 
controlling TetR expression (one of six replicates) should abolish differentiation by reducing !; and a 193 
transposition event of IS224 (one of six replicates) internal to lacI should abolish state transition.  194 

Sequence analysis of the payload delivery plasmid revealed transposition of IS125 between the cellulase and 195 
lysis genes in one of six sequenced replicates, likely disrupting operon expression (Supplementary Table 196 
11). The majority of the altruist cheater colonies we sequenced had perfect sequencing reads in the payload 197 
delivery transcription unit, suggesting lysis evasion via mutations on the genome or elsewhere on the 198 
plasmids. Given that the lysis gene is sourced from a colicin plasmid found in natural E. coli populations, it is 199 
possible the MG1655 genome encodes evolutionary paths to lysis immunity. 200 

Discussion 201 

We have demonstrated a first-principles approach to construct simple developmental gene circuits for 202 
synthetic biology and implemented one developmental system to utilize the complex feedstock cellulose. In-203 
depth system deconstruction and characterization enables model-guided optimization of system 204 
performance. 205 

Due to the observed functional instability of some switch variants, the SDAc system likely suffers from a 206 
tragedy of the commons26. In well-mixed cellulose media, emergent cheaters fully benefit from the public 207 
good provided by the altruists. Further, due to the costs of switching and lysis, the cheaters can out-compete 208 
cooperators and sweep the population. In the absence of altruists, cellulose degradation ceases, resulting in 209 
population collapse. Previous work has shown that when the environment is organized spatially a communal 210 
benefit applies only to nearby, closely related cells who are likely fellow cooperators27. Cheaters are 211 
stranded with limited or no access to the shared resource. This phenomenon, attributed to kin selection, 212 
could preserve cooperative behavior for many more generations, potentially avoiding the functional instability 213 
currently observed in the system. Future work could elucidate the role of structured environments in this 214 
synthetic system to reduce the impact of cheaters or evolve more stable cooperator phenotypes. 215 

While we only observed a high fraction of SDAc cheaters from hyperdifferentiation variant (T)18, engineering 216 
developmental circuits for deployment in bioreactors or other complex environments would require long-term 217 
evolutionary stability to minimize cheaters and maintain engineered function. Interestingly, previous studies 218 
showed that lacI tandem repeat mutations occur at a rate > 10-6 per generation23 and transposon insertion 219 
elements jump at rates of 10-6-10-5 per generation28, rates similar to our mutagenesis estimates, suggesting 220 
relatively simple modifications may considerably boost SDAc circuit longeivity. Some strategies to boost 221 
evolutionary stability include recoding the repeat region of lacI, replacing or introducing degeneracy into 222 
rbSSR sequences and porting the system to a low mutation rate strain missing insertion elements29. Further 223 
gains in system performance could be achieved by chromosomal integration of the SDAc network to prevent 224 
the fixation of mutant plasmids in the population30 or plasmid loss. Finally, incorporating higher activity 225 
cellulase cocktails will reduce the evolutionary pressure for cheating by reducing the population fraction 226 
required for self-destructive altruism. Analysis of the cheater model suggests a reduction of each cheater 227 
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rate by 10-fold and 100-fold for intermediate differentiator (T)16 would bring 39% and 81% increases in 228 
circuit stability, respectively, from 2.8 days to up to 5.1 days. 229 

The division of labor system outlined here enables the construction of developmental programs that can 230 
perform complex tasks in engineered microbial communities and this work can be extended in many ways. 231 
Self-destructive altruism behavior could be triggered in response to nutrient depletion, or to deliver 232 
alternative public good payloads. Stochastic strategies could be employed with or without self-destructive 233 
altruism to seed multicellular developmental programs for distributed metabolic engineering31, evolutionary 234 
engineering32 or to control distributions of multiple cell types in microbial communities33,34. Tunable 235 
developmental programs could also be applied to better understand the emergence and persistence of 236 
extant developmental programs, replacing complex regulation with tunable differentiation dynamics. 237 
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i. We constructed a population scale model composed of first order ordinary differential equations. The model 
contains four relevant species: consumers (!), altruists (!), cellulose (!, feedstock), and digestible nutrients (!) with 
corresponding units of colony forming units per mL for cells and grams per mL for molecules (1-4). Consumer and 
altruist cells grow in the presence of nutrients at rates !! and !!, respectively. Individual consumer cells differentiate 
to altruists at rate !, and altruists lyse at rate !. Altruist payloads degrade feedstock to nutrients at rate !, and 
nutrients yield biomass ! according to !. Nutrient-dependent dynamics are controlled by half maximal rate constants 
for growth (!! , !!) and differentiation (!!). Autolysis is considered nutrient-independent. Additional model details are 
included in Supplementary Table 1 and Supplementary Note 1. 

Experimental Parameter Measurements 
 

The modularity of the synthetic SDAc developmental gene network allows experimental measurement of each 
parameter by systematic deconstruction of the full system. We constructed simplified sub-models to identify the key 
circuit parameters and measured the behaviors of defined sub-circuits to estimate the parameters. Experimental 
details are described in the Materials and Methods and modeling approaches to the parameter estimates are 
described in detail in the Supplementary Information. 
 
ii. Module I, differentiation rate (!) 
A continuous growth model of consumer and pseudo-altruists was used to estimate differentiation rate for payload 
and lysis deficient SDAc strains. The temporal population fraction of consumers (RFP producers) and altruists (GFP 
producers) was measured by flow cytometry for strains pre-induced to the consumer state, washed and grown in 
cellobiose (Figure 2a). For each strain ! estimates were fit to equations (5, 6) using growth rates measured 
independently. 
 
iii. Module II, autolysis rate (!) 
A continuous growth model of consumers and functional altruists was used to estimate autolysis rate for SDAc 
strains. Strains were initialized and measured as in Module I. For each strain ! estimates were fit to equations (5, 7; 
Figure 2b) using growth rates and differentiation rates measured independently. 
 
iv. Module III, cellulose hydrolysis (!) 
A model of feedstock degradation and nutrient release was used to estimate cellulose hydrolysis rates for lysis 
deficient SDAc strains expressing cellulase payloads. Crude cell lysates were generated from cellulase producing 
strains. Nutrient release from PASC media inoculated with cell lysates was measured via growth of a cellulase and 
lysis deficient strain. For each strain ! estimates were fit to equation (3) using nutrient estimates derived by applying 
equation (8) to growth data. 
  
v. Cheater dynamics 
A continuous growth model of consumers, altruists, consumer cheaters that do not differentiate (S) and altruist 
cheaters that do not lyse (P) was used to estimate rates of escape from consumer (!!) and altruist (!!) states. 
Models that account for individual or both cheater sub-populations were used as fits to the population fraction data 
obtained for Module II (9-12, Figure 4d). 
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Figures 327 

 328 

Figure 1. A synthetic developmental program for cooperative cellulose digestion. (a) Cellobiose consumers 329 
stochastically transition to self-destructive altruists. Altruists, in turn, produce and release cellulase payloads 330 
via autolysis to support the consumer population. (b) The genetic implementation of the SDAc 331 
developmental program includes a differentiation control plasmid (above) and a payload delivery plasmid 332 
(below). Cell states are mediated by a mutual inhibition toggle switch using transcriptional repressors LacI 333 
and TetR. TetR-dominant cells express RFP as consumers; LacI-dominant cells co-express cellulase and 334 
colE3 lysis (colE3L) proteins with GFP as altruists. Differentiation and lysis rates are fine-tuned with rbSSR 335 
sequences for tetR and lacI (differentiation) and colE3L (lysis). (c) Demonstration of differentiation and 336 
autolysis within a microcolony seeded by a single cell. A large altruist cell (white arrow) maintains its payload 337 
(upper panel) until it undergoes autolysis (lower panel), enabling GFP payload diffusion to surrounding cells 338 
(circle). See Supplementary Movie.  339 
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 340 

Figure 2. Parameter sweeps for differentiation, autolysis and cellulase activity. (a) For the differentiation 341 
assay, cultures were initialized to the consumer state using IPTG and grown continuously in cellobiose to 342 
differentiate into altruists deficient in cellulase and lysis. (b) Genetic variants tested for differentiation vary 343 
rbSSR repeat length to modulate TetR expression. Cellulase and lysis genes are removed from the payload 344 
plasmid. (c) Differentiation data and model fits to estimate ! (see Supplementary Note 4). (d) For the lysis 345 
assay, cultures were initialized as in (a) for consumers to differentiate into lysis-competent altruists. (e) 346 
Genetic variants tested for lysis used intermediate differentiator (T)16, varying (AT)-rbSSR repeats driving 347 
lysis gene expression or using a control plasmid with no cellulase or lysis genes (ctl). (f) Lysis data and 348 
model fits to estimate ! (see Supplementary Note 5). (g) For the cellulase activity assay, lysis-deficient 349 
strains were induced to the altruist state using aTc, growth to saturation and sonicated to generate crude cell 350 
extracts. (h) Genetic variants tests for cellulase activity by expressing different cellulases or maintaining a 351 
control plasmid (!cel). (i) Cellulase activity data and model fits to estimate ! (see Supplementary Note 7). 352 
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 354 

Figure 3. Characterization of cellulose hydrolysis and nutrient utilization reveals SDAc model prediction 355 
accuracy. (a) Differentiation rate variants expressing cellulase CelD04 with lysis rbSSR (AT)8. (b) Clearing 356 
size distributions for individual colonies from differentiation variants in (a) (N = 31, 21, 17, 15, 6). (c) Growth 357 
titer in M9 minimal 0.4% PASC media after 72 hours for differentiation variants in (a). X-axis error bars 358 
represent standard deviation of the parameter estimate and y-axis error bars represent standard error for 359 
CFU counts from at least four replicates. One standard deviation of model uncertainty for cell growth is 360 
displayed as the shaded region. (d) Lysis rate variants for intermediate differentiator (T)16 expressing 361 
cellulase CelD04. (e) Clearing size distributions for individual colonies from lysis variants in (d) (N = 20, 14, 362 
11, 15). (f) Growth titer as in (c) for some lysis variants in (d). (g) Cellulase variants for intermediate 363 
differentiator (T)16 and an optimal lysis rbSSR for each cellulase. (h) Clearing size distributions for individual 364 
colonies from cellulase variants in (g) (N = 20, 15, 16). (i) Growth titer as in (c) for cellulase variants in (g). 365 
Error bars for x-axis represent the interquartile range for each ! estimate. Whiskers shown for each box plot 366 
extend one interquartile range.  367 
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 368 

 369 

Figure 4 Mechanisms and rates of escape for SDAc cheaters. (a) Fluorescence image of wild-type and 370 
cheater colonies isolated from PASC cultures of hyperdifferentiator (T)18 that no longer differentiate (S) or 371 
no longer lyse (P). (b) Representation of alternate SDAc model that incorporates mutational dynamics by 372 
including sink states for switch cheaters (S) and pseudo-altruist cheaters (P) with associated mutagenesis 373 
rates (see Box 1, module iv). (c) Dual cheater model fit to altruist fraction measurements for differentiation 374 
(compare to Supplementary Figure 5). Escape rate estimates for hyperdifferentiator (T)18 are used for all 375 
altruist fraction fits.  (d) Continuous growth model fit for bulk population growth rate !!"! measurements of 376 
differentiation variants, incorporating dual cheater rates from hyperdifferentiator (T)18. (e) Summary of 377 
observed mutations that produce switch or pseudo-altruist cheaters. Switch mutants included an expansion 378 
or contraction of a native simple sequence repeat element in the lacI coding sequence, repeat unit 379 
truncations of rbSSR (T)18 that controls differentiation rate and insertion sequence disruption of LacI 380 
expression. Insertion sequence disruption of the CelD04 gene (green arrows) were observed for altruist 381 
cheaters. For additional details on observed mutations see Supplementary Tables 10 and 11. 382 
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Materials and methods 1 

Media 2 

Rich media was prepared as LB Miller broth (Cat #244620, Difco), supplemented with 15 g L-1 bacto agar 3 

(Cat# 214030, Difco) when making solid media and with bacto agar and 0.1% carboxymethylcellulose 4 

(C5678, Sigma) to quantify cellulase clearings. M9 minimal media was prepared with M9 salts (Cat# 248510, 5 

Difco), 1 mM MgSO4, 100 µM CaCl2, supplemented with 1 mg mL-1 biotin and a carbon source (glucose, 6 

cellobiose or PASC) at concentrations specified in the text. M9 minimal 0.4% cellobiose plates for isolating 7 

cellobiose utilizer strains were prepared as above supplemented with 15 g L-1  bacto agar. Ampicillin and 8 

kanamycin antibiotics were supplemented when required at 20 µg mL-1 and 20 µg mL-1, respectively, unless 9 

indicated. 10 

PASC preparation 11 

Phosphoric acid swollen cellulose (PASC) was prepared following a reported protocol1. Briefly, a cellulose 12 

slurry was created from sterile water and cellulose powder (Sigmacell 20, Sigma), combined with ice-cold 13 

85% phosphoric acid (Sigma) and incubated at 4°C for 2 hours. Cellulose was precipitated in sterile water 14 

and washed repeatedly to remove the acid and bring the slurry to neutral pH. 15 

Strains and plasmid construction 16 

All strains used for assays in this study were derived from a variant of EcNR12 with genomic deletions of the 17 

fim operon, ampR and lacIZ (CT009). Cellobiose utilizer DL069 was used as parent strain for all SDAc 18 

variants. Control strains for cellobiose utilization were derived from progenitor strain CT009. All strains are 19 

listed in Supplementary Table 2. 20 

Plasmid construction was carried out using standard Gibson assembly protocols (Gibson et al. 2009). PCRs 21 

were performed using Phusion PCR Master Mix (NEB, M0531L) with a T-100 thermal cycler (Bio-Rad). 22 

Synthetic oligonucleotides for cloning were synthesized by Integrated DNA Technologies. Gibson assemblies 23 

were transformed into cloning strain DH5alpha. Transformations were performed by electroporation at 1250 24 

V using an Eppendorf 2510 electroporator. Transformants were cultured on LB Miller agar plates with 25 

appropriate antibiotic or LB liquid media (Difco) at 37°C. Plasmids were extracted using the QIAprep Spin 26 

Miniprep Kit. Plasmids were sequenced by Genewiz (Seattle, WA). All plasmid assemblies were performed 27 

with vector pSC101 vector pGA4A5 or p15A vector pGA3K3 3. 28 
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Cellulase genes were synthesized following standard polymerase cycling assembly (PCA) protocols4 using 29 

synthetic oligonucleotides provided by OligoCo, Inc. PCA was performed with Phusion polymerase and 30 

cloned into plasmids for sequence verification using Gibson Assembly. 31 

Genome engineering 32 

Cellobiose utilizer strain RGE531 was engineered using multiple cycles of multiplex genome engineering 33 

following Wang et al.2. E. coli strain CT009 was grown in LB Miller broth to OD 0.4-0.6 at 30°C, then heat 34 

shocked in a water bath for 15 minutes at 42°C. The culture was chilled via ice slurry and centrifuged for 3 35 

minutes at 5000 rpm in a centrifuge (Legend XR1, Thermo Scientific) pre-chilled to 4°C. The supernatant 36 

was decanted and cells were resuspended in 3 mL of ice-cold sterile water. The resuspension was 37 

centrifuged again for 3 minutes at 5000 rpm and the supernatant decanted. The cell pellet was resuspended 38 

in 800 µL of ice-cold sterile water and transferred to a 1.5 mL microcentrifuge tube. Cells were centrifuged at 39 

4000 x g for 1 minute (Accuspin Micro 17R, Fisher Scientific) pre-chilled to 4°C. Supernatants were aspirated 40 

by pipette and cell pellets were resuspended in 40 mL ice-cold sterile water. 41 

Competent cells were transformed with an oligonucleotide cocktail targeting ribosome binding site variation 42 

of chbB/A/C/F/G or deletion of chbR (synthesized by OligoCo, Inc., see Supplementary Table 10) by 43 

electroporation at 1800V using an Eppendorf electroporator 2510. Transformants were recovered in 10 mL of 44 

M9 0.4% cellobiose media in a shaker flask and grown for 48-72 hours at 30°C with shaking. This process 45 

was repeated for two additional cycles, using the saturated recovery culture from the previous as the 46 

inoculum for the next cycle of mutagenesis. Following each outgrowth in cellobiose, individual colonies were 47 

screened for rapid growth on M9 0.4% cellobiose agar plates, and several variants were isolated for chb 48 

operon sequencing and further use. 49 

Microscopy 50 

Fluorescence microscopy of SDAc microcolonies was carried out using equipment and procedures 51 

described previously3. E. coli strain 2.320 was transformed with a differentiation plasmid (tetR/lacI switch 52 

with (T)10/(A)12 repeats, p15A origin) and a payload delivery plasmid (colicin E3 lysis gene with (AC)11 repeat, 53 

colE1 origin). Individual colonies were grown to saturation in minimal M9CA media (M8010, Teknova), 50 µg 54 

mL-1 kanamycin and 20 µg mL-1 ampicillin. Cultures were diluted 100:1, grown for two hours with shaking at 55 

32°C and vortexed to break up cell aggregates. 1 µL of the culture was added to a glass-bottomed 56 

microscopy dish (GWSB-3512, WillCo Wells BV) and cells were immobilized on the dish surface using a 57 
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nutrient agar slab prepared with M9CA media, as described above, and 1% bacto agar (Difco). Microscopy 58 

dishes were transferred to a Nikon Ti-S inverted microscope (Nikon Instruments) equipped with a Coolsnap-59 

HQ camera (Roper Scientific) and an environmental chamber (In Vivo Scientific). Microcolony growth and 60 

fluorescent states were recorded every 15 min by capturing phase contrast, GFP and RFP images while the 61 

dishes were maintained at 32°C for 10 to 12 hours. 62 

Measurements of growth, differentiation and lysis rates 63 

Individual strains were initialized to the consumer state or altruist state (lysis-deficient control only) by 64 

inoculating individual colonies from a restreaked LB agar plate. The colonies were forced to the consumer 65 

state via IPTG induction (1 mM) or the altruist state via aTc induction (100 ng/mL) and grown at 37°C for 16 66 

hours on LB agar media supplemented with ampicillin and kanamycin. Cultures were washed to remove 67 

inducer, inoculated 2000:1 into a well of a deep-well plate with 500 µL M9 minimal 0.4% cellobiose media 68 

supplemented with biotin and antibiotics as above, and grown at 37°C. To maintain exponential growth and 69 

low cell density, each culture was sampled every 12 hours and transferred to the cytometer (C6 with 70 

CSampler, Accuri) to measure culture density and the fluorescence distribution to determine the fraction of 71 

altruists. Growth rates between measurements were measured as a simple exponential fit using the initial 72 

cell density, the final cell density, and the number of hours between measurements. Each culture was diluted 73 

into fresh broth with a dilution factor defined by the culture density and the estimated growth rate. The 74 

dilution factors ranged from 5:1 to 50:1 every 12 hours. Growth rates and population fractions of consumers 75 

and altruists were calculated as described in Supplementary Notes 3 and 4, respectively. 76 

Cell growth in PASC media 77 

Cultures grown in PASC were initially inoculated into LB liquid culture with ampicillin and kanamycin from 78 
individual colonies restreaked on LB agar plates with the same antibiotics and IPTG to force the consumer 79 
state. Saturated cultures were transferred at 100:1 dilutions into M9 minimal PASC media and viable cell 80 
counts were periodically quantified by serial dilution and plating. 81 

Measurements of carbon to biomass conversion efficiency 82 

Carbon to biomass yield for cellobiose and PASC were measured using strains grown in M9 minimal media 83 

supplemented with increasing levels of each carbon source, up to 4 g L-1. Cellobiose growth was quantified 84 

after 36 hours with cellulase and lysis deficient DL146 by serial dilution, plating and counting colonies. PASC 85 

growth was quantified after 72 hours with DL110 by the same method. All cultures were inoculated according 86 

to the PASC growth assay protocol and colony forming units were quantified for at least three replicates on 87 
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LB plates supplemented with ampicillin and kanamycin. The estimate for cellobiose was fit only to the linear, 88 

carbon-limited regime observed at concentrations less than 1g L-1 (see Supplementary Figure XX and 89 

Supplementary Note 6)  90 

Measurements of cellulose degradation 91 

Cellulase production strains for individual cellulases and cellulase cocktails were initialized by restreaking on 92 

LB agar plates supplemented with kanamycin (50 µg/mL), ampicillin (20 µg/mL) and aTc (100 ng/mL). Single 93 

colonies were transferred to 3 mL LB supplemented with kanamycin and ampicillin and grown to saturation 94 

overnight. Turbid 1 mL cultures were sonicated on ice (Ultrasonic Cell Disruptor, SharperTek) to release 95 

intracellular cellulase. The sonicator settings were 15 minutes with 95% power, and 75% duty cycle of 20 96 

seconds on and 10 seconds off. Viable cell counts were measured before and after sonication using serial 97 

dilution and CFU plating to measure cell lysis efficiency (!). Cell lysates were filtered (0.4 micron filter, 98 

Company) to generate sterile supernatant. 10 µL cellulase lysate was transferred to 1 mL of 0.4% M9 99 

minimal PASC + biotin media and incubated at 37°C for 72 hours, periodically measuring cellulose 100 

degradation by Congo Red absorbance or nutrient release. Uniprot identifiers for cellulases are Q45430 101 

(CelD04), P10475 (BsCel5) and A9KT90 (CpCel9). 102 

Congo Red absorbance measurements were taken by sampling 100 uL of the PASC growth media with 103 

cellulase at 0, 6, 12, 24, 48 and 72 hours post-inoculation, adding 100uL 0.15% (w/v) aqueous Congo red. 104 

After staining for 30 minutes, samples were centrifuged at 5000 rpm (Legend XR1) and 100 µL of PASC 105 

supernatant was transferred to a clear, flat-bottom microwell plate (Corning 2595). Absorbance readings 106 

were measured by plate reader (Biotek) at a wavelength of 480 nm. 107 

Cellulolytic release of digestible nutrients was estimated by measuring DL146 growth on PASC supernatant 108 

after lysate incubation. 10 µL aliquots of sterile cell lysates, prepared as above, were inoculated in 1 mL M9 109 

minimal 0.4% PASC media, prepared in parallel for each time measurement. At each time point, 1 mL PASC 110 

samples were centrifuged in triplicate to pellet the PASC and collect the supernatant. DL146 cultures were 111 

grown for 36 hours in the supernatant media and culture densities were measured by serial dilution and 112 

plating. 113 

Congo Red clearing assay 114 

Individual colonies were generated on LB agar containing cellulose and the plates were stained with Congo 115 

Red dye to observe clearings. Strains were incubated for 14 hours on LB Miller agar supplemented with 116 



 5 

kanamycin, ampicillin and 0.1% carboxymethylcellulose. Colonies were removed from plates by washing 117 

with 70% ethanol. Plates were stained with 0.1% Congo Red for 20 minutes and destained with 1 M NaCl in 118 

two rinse steps, destaining for 5 minutes and 30 minutes, respectively. Clearing diameter for each colony 119 

was quantified from bright-field images of the stained plates by measuring clearing diameter using ImageJ 120 

software. Clearing diameter was converted from pixels to millimeters by normalizing to known plate diameter. 121 

Sequencing SDAc switching or lysis cheaters 122 

Bright, monochromatic red or green fluorescent colonies isolated from six replicate cultures of (T)18/(A)10 123 

grown in M9 minimal 0.4% PASC media for 72 hours were identified via blue light transillumination. Each 124 

colony was replated separately on an LB agar plate and an LB agar plate supplemented with kanamycin and 125 

ampicillin to test for plasmid loss. Sequencing was performed on individual colonies by Genewiz, Inc. 126 

Differentiation plasmids were sequenced at the dual promoter region (BSSregSeq_2809) and the lacI C-127 

terminal sequence (lacIrptSeq_2810). Payload plasmids were sequenced across the payload transcription 128 

unit (oligos Vf2 & Vr). Sequencing oligos are listed in Supplementary Table 13. 129 

 130 
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Supplementary Figure 1. Engineering cellobiose utilization for SDAc strains 46 

 47 
 48 
(a) Chitobiose (chb) operon with targeted sites for promoter replacement (pChb), overexpression (chbA, 49 
chbB, chbC, chbF, chbG) or deletion (chbR). See Supplementary Table 11 for oligonucleotide sequences. 50 
(b) Workflow to select for variants that grow faster on cellobiose. (c) Growth rates for a selection of 51 
variants: wild-type (WT, EcNR1 Δfim ΔlacIZ), the native chb promoter replaced with a constitutive 52 
promoter (pC, RGE531), the fastest growing recombinant mutant (pC-opt, DL069) and a control strain 53 
(pCel, DL180) that expresses a membrane-bound beta-glucosidase from Cellvibrio japonicas1. Growth 54 
rates were measured at 32°C in a Biotek Synergy plate reader (n=3) using 200 µL cultures grown in 96-55 
well microwell plates. 56 
 57 
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Supplementary Figure 2. Parameter sweeps for cellulose utilization model 59 

 60 
 61 
Parameter sweeps of core SDAc model parameters to develop intuition for circuit behavior and to guide 62 
system implementation. When plots do not vary parameters, nominal values are !! = !! = 0.4, ! = 0.1, 63 
! = 0.25, ! = 1.0×10!!!. (a-c) Expected biomass yield as a function of differentiation rate for discrete 64 
growth (a), cellulase activity (b) and lysis (c) rates. (d, e) Expected biomass yield as a function of lysis 65 
rate for discrete cellulase activity rates (d) and as a function of cellulase activity rates for discrete 66 
differentiation rates (e). 67 
  68 
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Supplementary Figure 3. Data collection for growth, differentiation and lysis rates 69 

 70 
 71 
Experimental workflow to estimate growth, differentiation and lysis rates using low-density continuous 72 
culture and flow cytometry. Cultures are initialized in the consumer state by growing individual colonies on 73 
LB agar supplemented with IPTG. Colonies are washed and diluted into M9 minimal cellobiose media and 74 
periodically sampled in the flow cytometer to calculate the population fraction of differentiated cells and 75 
the dilution factor for the next growth passage.  76 
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Supplementary Figure 4. Mapping differentiation rate to differentiation delay 77 

 78 

 79 

Relationship between the differentiation rate to the delay in the initiation of switching following the 80 
removal of IPTG inducer for strains DL046, DL112, DL110 and DL108. Linear fit line is ! = 28.3 −81 
72.7! ℎ. The shaded area represents a 95% confidence interval.  82 
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Supplementary Figure 5. Altruist fraction fits combining growth, differentiation and lysis 83 
parameters 84 

 85 

Altruist fractions were calculated from measurements of the continuous culture differentiation experiment 86 
(N=3). Curves are derived from model predictions using growth rates of DL147, differentiation rates for 87 
the appropriate switch variant and the lysis rate for DL112, utilizing (AT)8 rbSSR for ColE3L expression. 88 
Data for labels (T)12, (T)14, (T)16 and(T)18 correspond to measurements for strains DL046, DL112, 89 
DL110 and DL108, respectively (n=3).  90 
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Supplementary Figure 6. Mapping colE3L (AT) rbSSR length to lysis rate  91 

 92 

Lysis rate fits as a function of (AT) repeat length for multiple strains with switch (T)16. Error bars 93 
represent parameter estimate uncertainty, inclusive of measurement error and parameter bootstrapping 94 
from growth rates and differentiation rates.  95 
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Supplementary Figure 7. Mapping cellulose degradation clearings to differentiation and lysis 96 
rates 97 

 98 

(a) Plot of cellulose degradation clearings as a function of differentiation rate for SDAc variants of the tetR 99 
rbSSR. (b) Plot of cellulose degradation clearings as a function of lysis rate for SDAc variants of the 100 
colE3L lysis gene rbSSR. For each panel the x-axis error bars represent uncertainty of experimental 101 
measurements and parameter bootstrapping and the y-axis error bars represent standard error from at 102 
least six replicate clearings of individual colonies (see Figure 3 caption).  103 
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Supplementary Figure 8. Carbon to biomass yield estimates 104 

 105 

Carbon utilization measurements and fits for DL146 (cellobiose) and DL110 (PASC).  106 
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Supplementary Movie 107 

Movie S1 shows the growth and differentiation dynamics of individual microcolonies derived from 108 
individual cells of the (T)10/(A)12 rbSSR-BSS switch variant with an inactive cellulase gene and colicin 109 
E3 lysis gene expression controlled by an (AC)11 rbSSR, transformed in strain 2.320. The movie 110 
demonstrates the stochastic differentiation and delayed lysis dynamics underlying SDAc behavior. The 111 
movie scale bar is 5 µm.  112 
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Supplementary Table 1. SDAc model parameters 113 

Parameter Description Units 
vC, vA Consumer, altruist growth rates h-1 

kC, kA Half maximal growth constants g 
σ Differentiation rate h-1 
kσ Half maximal differentiation constant g 
ρ Lysis rate h-1 
⍵ Cellulase activity CFU-1 mL 
γ Nutrient to biomass conversion efficiency CFU g-1 

 114 
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Supplementary Table 2. List of strains used 115 

Strain ID Switch variant* Payload colE3 lysis repeat Parent strain Modifications 
CT009 N/A N/A N/A EcNR1 ΔfimAICDFGH ΔampR ΔlacIZ 
RGE531 N/A N/A N/A CT009 pChb<>pConst, 
DL046 (T)12/(A)10 CelD04 (AT)8 DL069  
DL069 N/A N/A N/A CT009 pChb<>pConst, ΔchbR, Δ(λ-Red) 
DL108 (T)18/(A)10 CelD04 (AT)8 DL069  
DL110 (T)16/(A)10 CelD04 (AT)8 DL069  
DL112 (T)14/(A)10 CelD04 (AT)8 DL069  
DL146 (T)12/(A)10 None No lysis gene DL069  
DL147 (T)12/(A)10 CelD04 No lysis gene DL069  
DL180 N/A CelD04 No lysis gene CT009 Δ(λ-Red), pCellulose1 (ampR), mRFP1 (kanR) 
DL182 (T)16/(A)10 None No lysis gene DL069  
DL183 (T)14/(A)10 None No lysis gene DL069  
DL188 (T)18/(A)10 None No lysis gene DL069  
DL202 (T)16/(A)10 BsCel5 (AT)7 DL069  
DL261 (T)16/(A)10 CpCel9 (AT)7 DL069  
DL268 (T)16/(A)10 CelD04 (AT)5 DL069  
DL269 (T)16/(A)10 CelD04 (AT)6 DL069  
DL270 (T)16/(A)10 CelD04 (AT)7 DL069  
DL271 (T)16/(A)10 CelD04 (AT)9 DL069  
DL272 (T)16/(A)10 CelD04 (AT)10 DL069  
DL273 (T)16/(A)10 CelD04 (AT)11 DL069  
DL292 (T)12/(A)10 CpCel9 No lysis gene DL069  
DL294 (T)12/(A)10 BsCel5, CpCel9 No lysis gene DL069  
DL296 (T)12/(A)10 CelD04, CpCel9 No lysis gene DL069  
DL307 (T)12/(A)10 BsCel5 No lysis gene DL069  
DL322 (T)16/(A)10 BsCel5, CpCel9 (AT)9 DL069  
DL329 (T)12/(A)12 CelD04 colE3 DL069  
DL327 (T)16/(A)10 CelD04, CpCel9 (AT)9 DL069  

* (T)x/(A)y indicates x poly-T rbSSR repeats driving TetR expression and y poly-A repeats driving LacI expression for the differentiation plasmid.116 
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Supplementary Table 3. Cellobiose growth rates for SDAc strains 117 

Strain ID Switch variant Cellulase Lysis Induction state* Growth rate (hr-1) StDev 
DL146 (T)12/(A)10 None None Consumer 0.463 0.019 
DL146 (T)12/(A)10 None None Altruist 0.391 0.019 
DL147 (T)12/(A)10 CelD04 None Consumer 0.459 0.007 
DL147 (T)12/(A)10 CelD04 None Altruist 0.413 0.023 
DL046 (T)12/(A)10 CelD04 colE3 Consumer 0.438 0.018 
DL112 (T)14/(A)10 CelD04 colE3 Consumer 0.420 0.017 
DL183 (T)14/(A)10 None None Consumer 0.430 0.012 
DL110 (T)16/(A)10 CelD04 colE3 Consumer 0.389 0.018 
DL182 (T)16/(A)10 None None Consumer 0.423 0.019 
DL108 (T)18/(A)10 CelD04 colE3 Consumer 0.266 0.041 
DL188 (T)18/(A)10 None None Consumer 0.395 0.003 

* Induction to consumer state implies IPTG induction (1 mM). Induction to altruist state implies aTc 118 
induction (100 ng/mL).  119 
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Supplementary Table 4. Differentiation rates for lysis-deficient SDAc switch variants 120 

Strain ID Switch variant σ (h-1) StDev τ (h) StDev 

DL146 (T)12/(A)10  0.027 0.009 26.8 4.56 
DL183 (T)14/(A)10 0.081 0.018 21.1 0.97 
DL182 (T)16/(A)10 0.116 0.019 18.6 0.78 
DL188 (T)18/(A)10 0.211 0.015 13.9 0.03 

  121 
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Supplementary Table 5. Lysis rates for SDAc switch and lysis variants 122 

Strain ID Switch variant Lysis variant σ (h-1) ρ (h-1) StDev 
DL046 (T)12/(A)10 (AT)8 0.027 0.180 0.080 
DL112 (T)14/(A)10 (AT)8 0.081 0.159 0.052 
DL108 (T)18/(A)10 (AT)8 0.211 0.430 0.050 
DL268 (T)16/(A)10 (AT)5 0.116 0.130 0.035 
DL269 (T)16/(A)10 (AT)6 0.116 0.165 0.040 
DL270 (T)16/(A)10 (AT)7 0.116 0.134 0.042 
DL110 (T)16/(A)10 (AT)8 0.116 0.192 0.048 
DL271 (T)16/(A)10 (AT)9 0.116 0.173 0.080 
DL272 (T)16/(A)10 (AT)10 0.116 0.072 0.032 
DL273 (T)16/(A)10 (AT)11 0.116 0.073 0.032 

  123 
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Supplementary Table 6. Carbon to biomass yields for cellobiose and PASC 124 

Media Linear range γ (CFU g-1) StDev R2 

Cellobiose 0 – 1 g L-1 1.279e+12 3.344e+10 0.9919 
PASC 0 – 4 g L-1 1.795e+11 8.475e+09 0.9825 

  125 
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Supplementary Table 7. Cellulase activity measurements for cellulase production strains 126 

Strain ID Cellulase ! (hydrolysis)  StDev ! (biomass) StDev 
DL292 CpCel9 4.6e-12 2.4e-13 3.6e-13 3.9e-13 
DL147 CelD04 5.7e-12 6.8e-13 1.6e-12 5.3e-13 
DL294 CelD04 + CpCel9 6.8e-12 9.5e-13 1.8e-12 5.6e-13 
DL307 BsCel5 6.1e-12 9.8e-13 1.2e-12 2.9e-13 
DL294 BsCel5 + CpCel9 7.4e-12 4.3e-13 1.9e-12 3.0e-13 

Note: units for ! are CFU-1 mL  127 
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Supplementary Table 8. Half-maximal rate constants for growth and differentiation 128 

Parameter Fit StDev 
!! , !! 0.00112 0.00045 
!! 0.09999 0.00019 

  129 



 20 

Supplementary Table 9. Cheater rates for expanded SDAc model 130 

 131 

Cheater type(s) !! (h-1) StDev !! (h-1) StDev 
Differentiation 2.688e-06 2.399e-06 n/a n/a 
Differentiation and lysis 1.177e-05 9.953e-06 7.368e-05 3.565e-05 

  132 
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Supplementary Table 10. Genotypes for differentiation cheaters 133 

 134 

Plate 
Replicate 

Isolation 
condition Promoter mutation lacI mutation 

2 LB None None 
2 LB kan/amp None (CTGG)2 
2 LB kan/amp None None 
3 LB kan/amp None IS2 insertion at base 15 of lacI 
3 LB kan/amp None IS2 insertion at base 15 of lacI 
3 LB kan/amp None IS2 insertion at base 34 of lacI 
4 LB None (CTTG)4 
4 LB None 148 bp lacI deletion (A351) 
4 LB kan/amp None None 
4 LB kan/amp None (CTTG)4 

5 LB kan/amp None (CTTG)4 
5 LB kan/amp None (CTGG)2 
5 LB kan/amp None (CTTG)4 
5 LB kan/amp None 20 bp lacI deletion (A303) 
6 LB kan/amp Δ(T)5 None 
6 LB kan/amp None (CTGG)2 
6 LB kan/amp Δ(T)5 None 
6 LB kan/amp Δ(T)5 None 

 135 
Sequencing results of differentiation plasmid mutations from monochromatic RFP-positive (T)18/(A)10 136 
escape colonies (six replicate plates). The first replicate plate had no mutations at the sequenced loci for 137 
the differentiation plasmid. 138 
  139 
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Supplementary Table 11. Genotypes for lysis cheaters 140 

 141 

Plate Replicate Isolation condition Payload plasmid mutations 

1 LB None 
1 LB Kan/Amp None 
2 LB None 
2 LB None 
2 LB None 
2 LB Kan/Amp None 
2 LB Kan/Amp None 
2 LB Kan/Amp None 
2 LB Kan/Amp None 
3 LB None 
4 LB IS1 insertion at A514 in celD04 
4 LB IS1 insertion at A514 in celD04 
4 LB Kan/Amp IS1 insertion at A514 in celD04 
4 LB Kan/Amp IS1 insertion at A514 in celD04 
5 LB None 
6 LB None 
6 LB None 
6 LB Kan/Amp None 

 142 
Sequencing results of payload plasmid mutations from monochromatic GFP-positive (T)18/(A)10 escape 143 
colonies (six replicate plates). 144 
  145 



 23 

Supplementary Table 12. Oligonucleotides used to modify chb operon and for sequencing 146 
cheater genotypes 147 

 148 

Oligo name Sequence 

pChb<>pConst CTTCCATGCTCTGGGTAACTTGCGAAACCAACATGATGAATCTATTATAAAAAAAAAAAAAAAAA
AAGTCAATACTCTATCGAACTCAGGCCAAAAAAAACCGGCGCAATGGCCGGTTTC 

chbR_del ggacataaataatccagcaacaggacagatatgtgaattgtcaggtataacgacttactgcatcg
actccttatgccttcagtttttcatgaagctcaattaattcagtaatcagttcac 

chbA_A15 agctcttcagcttccgtttgcgtatcgggaatgttatcgagatccatcatTTTTTTTTTTTTTTT
CCTCCTCttttcttaccggcacgattacccgtaccggcatcgattaaaatttcag 

chbC_T15 actgcaaaagggaggagtaccttttcaagcgatgcaataacattactcatAAAAAAAAAAAAAAA
CCTCCTaaaaaccgcaatttaaatattgcggtattgatttatgaaataactcttt 

chbB_A15 gaggtagacatgcccgcagaacaaaacagataaatgtgtttcttttccatTTTTTTTTTTTTTTT
ACCTCCTGATatcgacgattatctgtcagccagacactccgcaagccttaacctg 

chbF_A5 gtatagctgctcccgccaccaatagtgacgacttttaatttctggctcatTTTTTACCTCCTagt
acagaatactgatatctggcatatctgcccccccggacataaata 

chbF_A15 gtatagctgctcccgccaccaatagtgacgacttttaatttctggctcatTTTTTTTTTTTTTTT
ACCTCCTagtacagaatactgatatctggcatatctgcccccccggacataaata 

chbG_T15 cctttgcttaagccaaaatcatcggcattaacaatcagtaagcgttccatAAAAAAAAAAAAAAA
CCTCCttaatgtgcttttttaagctctgcgatgcagtcggcaaagtttggcagcc 

BSSregSeq_2809 GGCTGCTCTACACCTAGCTTCTGG 

lacIrptSeq_2810 GGTTTGTTGAAAACCGGACATGG 

Vf2 TGCCACCTGACGTCTAAGAA 

Vr ATTACCGCCTTTGAGTGAGC 

  149 
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Supplementary Note 1. Model assumptions for SDAc population dynamics 150 

 151 
The model for synthetic self-destructive altruism dynamics relies on multiple assumptions to minimize the 152 
number of parameters. First, intracellular enzyme accumulation is considered independent of the lysis 153 
rate, resulting in a fixed payload size per altruist. Second, cellulase dynamics were removed from the 154 
system of equations based on an assumption that cellulase enzymatic activity occurs much faster than its 155 
degradation, allowing parameters to be consolidated. Cellulase activity ! is normalized to the altruist 156 
population through the product !A. Third, while we assume nutrient-dependent rates for growth and 157 
switching, altruist commitment to lysis is considered to be nutrient independent.  158 
 159 

Supplementary Note 2. Parameter bootstrapping for SDAc models 160 

 161 
Bootstrapping based on Monte Carlo simulations was used to generate many parameter estimates for 162 
SDAc models. Uncertainty in the parameter estimates depend both on experimental measurement error 163 
and independently measured experimental parameters. Parameter estimates should reflect both the fit to 164 
the experimental data and uncertainty propagated from parameters used to constrain the fit. Thousands 165 
of parameter fits were generated to propagate the uncertainty measures, randomly sampling from a 166 
normal distribution of the existing parameters for each fit2. We calculated the mean and standard 167 
deviation of the ensemble of fits to generate the parameter estimate. 168 
 169 

Supplementary Note 3. Estimating growth rates from cytometry data 170 

 171 
As described in the methods section, the growth rates for consumer cells and altruist cells were estimated 172 
by applying an exponential fit to cell densities measured via cytometry at 12 hour intervals in periodically 173 
diluted samples. The growth rate for each strain over three passage intervals (36, 48, 60 h) was 174 
measured in triplicate to obtain mean and standard error measurements for each strain (Supplementary 175 
Table 2). 176 
 177 
For each strain, growth rate ! was estimated from time t1 to time t2 using equations  178 
  179 
 !!! = !!! !!"

!!"!!!
!! !!!!! , (S1) 

 ! = ln !!!
!!!

!!"!!!
!!"

!! − !! !!,        (S2) 

 180 
for which Pt1 and Pt2 are the cell densities measured in gated events per second at times t1 and t2, 181 
respectively, Vtx is the transfer volume in µL between passages and Vw is the media volume in µL. 182 
 183 

Supplementary Note 4. Estimating differentiation rates from cytometry data 184 

 185 
As described in Box 1 and the methods section, the differentiation rate ! for individual strains was 186 
estimated by applying parameter bootstrapping for growth rate estimates to fit Equations (5-6) to the 187 
fraction of lysis-deficient altruists. Cytometry samples were processed using custom Matlab scripts as 188 
previously reported3. Briefly, samples were filtered using a fixed gate for forward scatter values between 189 
16,000 and 100,000 and side scatter values between 10 and 7,000. The altruist subpopulation was 190 
determined by using a fixed threshold in the GFP channel (488 nm excitation with 533 nm bandpass 191 
emission filter) of 600, which captures less that 0.1% of the population for a non-fluorescent strain. 192 
 193 
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An analytical solution to consumer and lysis-deficient altruist populations that accounts for a temporal 194 
delay observed in differentiation experiments was generated from Equations (5-6) of Box 1:     195 

 196 
Differentiation rate ! and corresponding delay ! were estimated from measurements of ! !

! ! !! !  fit to 197 
Equations (S3, S4) for the cellulase and lysis deficient SDAc strains shown in Figure 2c (see 198 
Supplementary Table 3 for values). Fits were generated using the Levenberg-Marquardt nonlinear least 199 
squares algorithm (nlsLM) in R. Differentiation delay was observed to be inversely proportional to the 200 
differentiation rate (see Supplementary Figure 4). Parameter bootstrapping was performed to create 201 
10,000 fits for each of three biological replicates, randomly sampling a normal distribution (n=10,000) of 202 
vC and vA from control strain DL146. The mean and standard deviation of the fit ensemble were calculated 203 
as the mean and standard deviation differentiation and delay measures for each strain. 204 
 205 

Supplementary Note 5. Estimating lysis rates from cytometry data 206 

 207 
As described in Box 1 and the methods section, the lysis rate ! for individual strains was estimated by 208 
applying parameter bootstrapping for growth rate, differentiation and delay estimates to fit Equations (5, 209 
7) to the fraction of GFP-expressing altruists. Cytometry samples were processed as described in 210 
Supplementary Note 4. 211 
 212 
An analytical solution to consumer and altruist populations that includes a lysis term and accounts for 213 
delayed differentiation as in Supplemental Equations S3 and S4 was generated from Equations (5, 7) of 214 
Box 1: 215 
 216 
 ! ! = ! !!!! !!! , (S3) 
 ! ! = ! !(!!!!) !!! !! !!!! !!!

!!!!!!!!!
. (S5) 

 217 
Lysis rate ! was estimated from measurements of ! !

! ! !! !  fit to Equations (S3, S5) for the SDAc strains 218 
shown in Figure 2f (see Supplementary Table 4 for values). Fits and parameter bootstrapping were 219 
performed as described for differentiation rate estimates in Supplementary Note 4. Random growth rate 220 
estimates for bootstrapping were sampled from cellulase production variant DL147 and differentiation 221 
rates estimates were sampled from rates of the appropriate switch variant. 222 
 223 

Supplementary Note 6. Estimating biomass yield for cellobiose and PASC 224 

 225 
The Monod model of bacterial growth assumes a linear relationship between the saturated density of cells 226 
and the limiting nutrient and states that the slope of the line is the yield coefficient for the nutrient4. Here, 227 
we depict that relationship as  228 
 229 
 ! ! = !" + !,        (S6) 
 230 
with Y as the biomass yield, ! as the yield coefficient, n as the nutrient level and b as an inoculation-231 
dependent y. DL146 cultures grown in cellobiose appeared to be carbon limited only at concentrations 232 
below 1 g L-1 (Supplementary Figure 7a). When all cellobiose concentrations are included in the fit, 233 
carbon utilization matches an exponential saturation model, 234 
  235 

 ! ! = ! !!!! !!! , (S3) 
 ! ! = ! !!! !!! !! !!!! !!!

!!!!!!!
. (S4) 
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 !(!) = !(1 − !!"),        (S7) 
 236 
with S as the maximum biomass yield afforded by the limiting nutrient. No saturation was observed for 237 
PASC (Supplementary Figure 7b), suggesting the media remains carbon limited up to 4 g L-1. 238 
Comparison of the slopes for each carbon source (γPASC/γcellobiose) suggests approximately 14% of 239 
available carbon in the cellulose is released in a digestible form for cellulase CelD04. Estimates for γ	are 240 
summarized in Supplementary Table 6. 241 
 242 

Supplementary Note 7. Estimating cellulase activity rates 243 

 244 
Culture densities before and after sonication were used to estimate altruist concentration A and lysis 245 
efficiency ! from Equation 3 of Box 1. As mentioned in the Methods section, two approaches were used 246 
to estimate cellulose hydrolysis: Congo Red staining of residual cellulose and biomass conversion from 247 
released nutrients. Congo Red absorbance measurements consistently suggested higher cellulose 248 
degradation rates than the nutrient release assay, suggesting some hydrolysis products, including 249 
oligomers larger than cellobiose, might not be digestible by SDAc strains. 250 
 251 
A spectrophotometric calibration curve was established to estimate residual cellulose by measuring 252 
absorbance at 480 nm for PASC supernatant stained with 0.15% Congo Red. The calibration curve was 253 
generated for PASC concentrations from 2.68 g L-1 to 4 g L-1. Absorbance readings were converted to 254 
cellulose concentrations using a linear fit to the calibration curve (!! = 0.8869). 255 
 256 
 !"##$#%&" = − 0.595 ± 0.0125  ×!"#!"# + (4.7 ± 0.03)        (S8) 
 257 
Cellulose concentrations were estimated from released nutrients by measuring viable cell counts of 258 
cultures grown in PASC supernatant and converting cell counts to nutrients using the ! parameter and 259 
Supplementary Equation S6. 260 
 261 
 ! = !! −  !! = !! −

!"U !! − !
! = 0.004 − !"#(!!) − (5.1e07 ± 1.68e07)(1.28e12 ± 3.34e10)         

(S9) 
 262 
Parameter bootstrapping was used to estimate feedstock degradation for measurements using each 263 
method by generating mean and standard deviation statistics for 10,000 fits, each randomly sampling 264 
from a normal distribution of the error for the appropriate calibration curve. 265 
 266 
An analytical solution to feedstock levels was generated from Equation (3) of Box 1 to estimate cellulase 267 
activity rates from Congo Red absorbance or nutrient release measurements, 268 
 269 
 ! =  !!!!"#$ + !, (S10) 
 270 
with parameters P, !, and f. By the rules of derivation, the cellulase activity rate ! is the product of P and 271 
!. Fits were generated using initial altruist concentrations (A) and lysis efficiency (!) measured for each 272 
strain (Supplementary Table 7).  273 
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 274 

Supplementary Note 8. Estimating half-maximal rate constants for growth and differentiation  275 

 276 
Nutrient-specific half-maximal rate constants for consumer and altruist growth – (!! and !!, respectively) 277 
and differentiation (!!) were fit to the growth curve for strain DL110. 10,000 fits were generated using 278 
parameter distributions with the mean and standard deviation for !, ! and ! associated with switch 279 
variant	(T)16/(A)10, lysis rbSSR variant (AT)8 and CelD04 payload variant from Supplementary Tables 280 
4, 5 and 7, respectively. Parameter bootstrapping distributions for growth rates (vC,	 vA) were generated 281 
from DL147 (Supplementary Table 3):  282 
 283 

!!  = 0.459 ± 0.004 
!! = 0.413 ± 0.012 
! = 0.116 ± 0.009 
! = 0.191 ± 0.025 
! = 1.279 ∗ 10!" ± 3.344 ∗ 10!" 
! = 1.6 ∗ 10!!" ± 5.3 ∗ 10!!" 

 
The half maximal constants for C and A are assumed to be the same and were fit as one parameter. The 284 
resulting parameter fits are shown in Supplementary Table 8. These half-maximal rate constants were 285 
adopted for use as necessary in models for SDAc strains. 286 
 287 

Supplementary Note 9. Setting initial conditions for nutrients and population size for full 288 
dynamics model 289 

SDAc system dynamics, both in the model and the physical implementation, were sensitive to initial 290 
conditions. For example, PASC growth media was inoculated with SDAc cultures directly from a saturated 291 
culture in rich media. Thus, the initial concentration of viable cells was dependent on differentiation rate 292 
(cultures with high differentiation rates likely generate more altruists, reducing the concentration of viable 293 
cells) and the inoculum included cellulase payload to begin converting PASC to nutrients. To account for 294 
these details, initial nutrients (with a concomitant reduction in initial feedstock) and initial population size 295 
were estimated as a function of the differentiation rate !. Nutrients levels were estimated by fitting a 296 
logarithmic curve to the growth yield of DL146 in PASC media with filtered supernatant from SDAc strains 297 
DL046, DL112, DL110 and DL108, applying Equation 8 from Box 1 to convert CFUs to nutrients. 298 
Parameter bootstrapping from uncertainty in the ! parameter (Supplementary Equation S6) was applied 299 
to the fit (10,000 samples), which produced an estimate for initial nutrients as a function of differentiation 300 
rate: !! = 1.952 ∗ 10!! ± 2.952 ∗ 10!! log ! + 8.529 ∗ 10!! ± 9.463 ∗ 10!! . 301 
 302 
A linear curve fit was used to map differentiation rate to initial population size. Viable cell count mean and 303 
standard deviation measurements from the same SDAc strains above were used to map differentiation 304 
rate ! to initial cell concentration !!: !! = − 1.7×10! ± 4.14×10! ! + (3.66×10! ± 5.43×10!). Initial 305 
population estimates were distributed among consumers and altruists by applying the steady state 306 
solutions to Equations 5 and 6 from Box 1 for DL147 growth rates and strain-specific differentiation rates. 307 
 308 
Supplementary Note 10. Estimating SDAc cheater rates 309 

Cooperation escape rates for consumers and for altruists were estimated by applying parameter 310 
bootstrapping for growth, differentiation and lysis rates to fit Equations (9-12) from Box 1 to the 311 
fluorescence distribution data from SDAc strain DL108. The model was fit to the fluorescence distribution 312 
data (collected as described in Supplementary Note 4) separately with different assumptions: no cheaters 313 
(!! = !! = 0, simplifies to Equations 5-6), differentiation cheaters only (!! = 0) and both differentiation 314 
and lysis cheaters. Cheater rates for the latter two assumptions are shown in Supplementary Table 9. 315 
The fits were generated using the Levenberg-Marquardt nonlinear least squares algorithm (nlsLM) in R.  316 
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